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Statistical Issues on the No-Observed-
Adverse-Effect Level in Categorical

Response

by Takashi Yanagawa, Yasuki Kikuchi, and

Kenneth G. Brown’

The determination of the value of the no-observed-adverse-cffect level (NOAEL) when observed responses can be
categorized by severity (categorical data) and sample sizes are small is discussed. The commeon situation of only two
categories, where only the presence or absence of an effect is observed, is addressed first (dichotomous data). Three tests
for dichotomous data are critically examined, including the Brown-La Vange test, a modified version of that test, and Dun-
nett’s multiple comparison test. Although the modified test is an improvement, all three procedures have shortcomings
in determining the value of the NOAEL, particularly when the sample size is small. An alternative method is suggested,
based on the Akaike information criterion (AIC), which performs well. This method is extended to severity data with an
arbitrary number of categories. Use of a dose-response curve for the NOAEL is discussed.

Introduction

As used here, the no-observed-adverse-effect level (NOAEL)
is the highest experimental dose at which there is no statistical-
ly significant increase in an adverse toxicological end point. This
definition restricts the possible values of the NOAEL to the ex-
perimental dose values, the only dose levels at which there are
observations. Sometimes a dose-response curve is fit to the data,
which provides a way of estimating the NOAEL as the lowest
dose corresponding to the point on the curve at which the
predicted response equals the control rate plus a specified value
equal to an acceptable level of increased risk. At low-dose levels,
the NOAEL dose may be sensitive to the choice of the dose-
response curve fit to the data, particularly in small samples. Con-
sequently, this approach has been suggested for determining the
“benchmark dose™ as an alternative to the NOAEL, a lower con-
fidence limit to a dose producing some predetermined increase
in response rate that will not involve extrapolation far below the
experimental range (/). The concept of the NOAEL is central to
assessment of risk from systematic toxicants, as currently prac-
ticed. Inclusion of the NOAEL value in reported laboratory ex-
periments is recommended by the Pharmaceutical Affairs
Bureau, Japanese government (GLP, 1989). The U.S. Environ-
mental Protection Agency (EPA) uses the NOAEL in setting

!Department of Mathematics, Kyushu University, Fukuoka 812, Japan.

Sasebo College of Technology, Sasebo 857-11, Japan.

*Kenneth G. Brown Inc., PO. Box 16608, Chapel Hill, NC 27516-6608.

Address reprint requests to T. Yanagawa, Department of Mathematics, Kyushu
University 33, Fukuoka 812, Japan.

This paper was presented at the International Biostatistics Conference on the
Study of Toxicolegy that was held May 13-15, 1991, in Tokyo, Japan.

regulatory levels for exposure to noncancerous toxic substances
2,.3.

If dp denotes the control dose, and dy, o, .. .,dx are increasing
dose levels, then the correct choice for the NOAEL is the highest
dose value at which the increase in the true risk over the
background rate is zero or otherwise acceptably small. One
statistical approach that may be used fot the NOAEL is to test the
hypothesis of no difference in the true response rates between the
control group and a treatinent group, pairing the control group
for a test with each treatment group sequentially. Williams’ test
functions this way and can be applied when the data are assumed
to be sampled from a normal distribution, e.g., when response
is weight gain (4). A nonparametric version of that test for use
when data are from a continuous but non-normatl distribution is
described by Shirley (5) and Williams (6). These tests are order
restricted, incorporating a priori knowledge that the expected
response does not decrease (or increase) as dose level increases.
We are unaware of any test in this class for categorical data ap-
plicable when severity of response is recorded. For simple
dichotomous data (two categories), the test of Brown-La Vange
{7) and a modified version of that test described here are ex-
amples of order-restricted conditional tests. For dichotomous
responses, considerable attention has been focused on applying
dose-response curves for both cancer and noncancer responses.
Crump (/) essentially converted his multistage model for cancer
data to noncancer application by adding a parameter for a
*“threshold” dose.

In this paper we are interested in the NOAEL for categorical
data, including dichotomous data as a simple case (k=2), from
the statistical point of view. Issues related to regulatory applica-
tions, such as the use of safety factors with the NOAEL, are
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not discussed. We study first the behavior of three tests with
dichotomous data, including the Brown-La Vange method, a
modification of this method, and the multiple comparison test of
Dunnett. It is shown that, although the modified test is an im-
provement over the other two tests, all three tests have serious
shortcomings when the sample size is small. A new test im-
plementing the Akaike information criterion (AIC) (8) is shown
to work well. The AIC test is generalized to an arbitrary number
of categories for application with severity data. Finally, applica-
tion of the AIC with a dose-response model for noncancer end
points is outlined, to be more fully developed in a follow-up
paper ( Yanagawa et al., unpublished data).

Tests for Dichotomous Response Data

An experiment with dichotomous response data is described
by the number of experimental subjects at risk (n;), the number
with the response of interest (r;), and the exposure level (d;), for
i = 0l,..., k. The subscript zero refers to the control group,
making dy = 0; otherwise the dose values are arbitrary, subject
to order 0 = dy<d, <...<d,. The true, but unknown response
rate at dose d; is denoted by p;, § = Q,1,..., k. It is assumed that
the samples are random and mutually independent, and that the
number of responses r; at d; is binomially distributed with
parameters {(r.,p;), i = 0,....k. It is also assumed to be known
a priori that the true response rate is nondecreasing as dose in-
creases, i.e., 0€po<p <. . . <pr<1. Alternatively, one could
assume that 1 > pe=pi>. .. 2p20.

Let &* denote the largest d; value such that po = p;. The test
procedure to be described is a method by which to assign the
NOAEL. a dose value based on the sample data, conditional on
the total number of responses observed over all dose groups,
namely, $() = (ro +ri+. . . +r). Inthe following section, we
describe the Brown-La Vange (BLV) test, a modified form of it
{(MBLYV), and the Dunnett-type multiple comparison test
(DMQC). The tests are compared when k = 2 for simplicity.

Brown-La Vange Test

Without the constraint py<p1 <. . . <ps, the maximum
likelihood estimate (MLE) of p; is ry/n;. The MLE of p, under
the order restriction, however, is m;/n;, where m; is constructed
by the pool-adjacent-violators algorithm (9,/0). The BLV step-
up tests are based on the values of (mo, m,, . . . ,m), as described
for k = 2 in the following. Initially, the null hypothesis H,":
Po = pi is tested against H,': po<p. If H,'! is rejected, then the
NOAEL. takes the value dy; if it is not rejected, then the NOAEL
isd, or d, as determined by the subsequent test. Thus we could
write H,': 6* = d, or dy versus H,': 6% = dy. Lett; = m/ny —
o/ be the test statistic for H,'. For a specified test size, o), re-
ject H,' if 1, takes a value as large as k,, where K, is the smallest
constant such that Prf, > k| S(r)] < o, when H,! s true.
Here |S(r) should be read as “‘conditional on S(r) = (ro+ r\ +
r.).) If H,! is rejected, then the NOAEL takes the value . If
H.'is not rejected, then H,%: po = p2| po = p1 should be tested,
where |p; = p, should be read as “conditional on having not re-
jected H,': p; = p1.” The alternative hypothesis can be written
as H.2: p,<palpo = pr. Equivalently, the second test is of H,”:
&% = b|6* >d, versus H.2: 8* = d,]6* >dy. If H.2 is rejected,
then the NOAEL takes the value d,; otherwise, it takes

the value d;. For a specified test size, o, the test rejects H,2 if
12 = ma/ny — molng > ki, where k; is the smallest constant such
that

Prita2 ka1 S(n, n< k) =

Prin<kin 2k 1S0)
Prin < ki | S(r))

M

under H,%.

Dunnett-Type Multiple Comparison
Test

Alternatively, we may apply the Dunnett multiple comparison
test (DMC) for the NOAEL based on the adjusted response. For
a specified test size, a, this test first selects the smallest constant
k such that

Prib<k|Sr)=21-a 2)

under po = p; = p», from which the NOAEL is determined ac-
cording to: if #; > k, then NOAEL = dy; if sy < kand 1; > &k,
then NOAEL = 4;;ift,< kand £, < k, then NOAEL = 4.

Modification to the Brown-La Vange
Test

This test pools the responses at dy and 4, if no significance
difference is detected between these dose levels to increase the
power of the test. The test is based on the values of (ry,
r,....n), the naive responses. The test procedure is the same
as that of the Brown-La Vange test except the test statistic. The
test statistic for H,' is 4, = ri/my — ro/no, and the test statistic for
Hlisu; = riny — (r + n)/(ng + ny). For a specified test size,
o, the test rejects H,' if w, > ki* where k; is the smallest con-
stant such that Pr{ &, > ki*| S{r)] < a1, when H,' is true, For
a specified test size, oz, the test rejects Ho? if ux > k* where
k»* is the smallest constant such that

Priuy 2 ks | S(r); w1 < k1) < 03 3)
under H,2.

Small-Sample Behavior of the Tests

We compare the tests in detail when k& = 2, no=n1=m=10,
and S(r)=4. When 5{r)=4 is given, the number of all possible
configurations of the tables of ny=n;=n;=101s 15, as shown in
Table 1. The probability of cach entry in the table, when
Po=p1=p, has been computed from a multiple hypergeometric
distribution and included in the table. Consequently, the pro-
bability is the chance occurrence of an entry in the absence of an
effect.

The distributions of statistics #, and u, have been tabulated
from the entries in Table 1 and are displayed in Table 2. Table 2
shows that, in the case of the conditional test based on the ad-
justed response, the values of the test statistic #, take only four
points with positive probability, and the jumps of the cumulative
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Tabie 1. List of all feasible tables when ne=n,=m;=10 and $)r) = 4.

Entry Number
Response | 2 3 4 S 6 7 8 9 10 11 12 13 14 15
o 0 0 0 0 0 1 I 1 1 2 2 2 3 3 4
r 0 1 2 3 4 0 1 2 3 0 l 2 0 1 0
2 4 3 2 1 0 3 2 1 0 2 1 0 1 0 M)

Probability 0.0077 0.0438 0.0739 0.0438 0.0077 0.0438 0.1642 0.1642 0.0438 0.0739 0.1642 0.0739 0.0438 0.0438 0.0077

Table 2. The conditional distributions of the statistics ¢, and u,
conditioned on S(r) = 4.

Value of 1,

0.00 .05 0.10 0.20

Cumulative 1 0.3771 0.1691 0.1253
prob.

Value of u,

—0.40 -0.30 —0.20 -0.10 000 010 020 030 0.40

Cumulative 1 0.9923 0.9486 0.8309 0.6229 0.3771 0.1691 0.0515 0.0077
prob.

probability are so large that no finite &, exists when the values
of o are specified less than 0.1253. Similarly, the Dunneit-
type multiple comparison test does not select dy as the NOAEL
when the values of « are specified to be less than 0.221. The
modified test is also a conditional test, but based on the naive
response, and the statistic u, takes more values than ¢/, and the
jumps of the cumulative probabilities are relatively small. Thus
we may test H,' at test sizes less than 10%, e.g., at
ar = 0.05150r0.0077.

Table 3. The entries in Table 1 that select d,, d), and d; as the
NOAEL when the BLYV test, Dunnet type test
the MBLY test, and the AIC are applied.

Test size NOAEL
Test oy (k|) [+ 7] (kz) dy dl d?
MBLV 0.05° .40y 0.0% (0.40) 5 1 AQ
0.10° 0.25) 5 1,2,6 AO
0.1 (0.30) 008 (0.40) 4,5 1 AQ
0.10° (0.400 4,5 1 AO
0.0515 (0.30) 0.0081 (0.40) 4,5 1 AO
0.1004 (0.25) 4,5 1,2,6 AOQO
0.1691 (0.20) 0.0092 (0.40) 3.9.4,5 1 AOD
0.1146 (0.25) 3,9,4,5 1,26 AO
BLV 0.05 =) 0.05 (0.40) None 1 AO
0.10¢ (0.25) None 1,2,6 AO
0.10° -9 0.05 (0.40) None 1 AO
0.1¢¢ (0.25) None 1,2,6 AO
0.1253 (0200 0.0088 (0.40) 3,45 1 AQ
0.0588 (©0.30) 3.4,5 1,2 AO
0.1088 (.25 3,45 1,26 AO
Dunnett- o = 0.05* (k =0.40) None 1 AO
type =0.10° (k =0.25) None 1,2,6 AO
=0.20° (k =0.25) None 1,2,6 AO
=0.221 {k = 0.20} 3.4,5 1,2,6 AO
AIC 3,4,6 1,2,6 AO

Abbreviations: NOAEL, no-observed-adverse-cffect level; BLV, Brown-
La Vange test; MBLV, modified Brown-La Vange test; AIC, Akaike informa-
tion criterion; AQ, all others.

The three tests are applied to each entry in Table 1 with the
results summarized in Table 3. When entry no. 4 or 5 is ob-
served (Table 1), the modified test selects dy as the NOAEL at
the test size o = 0.10 and o = 0.1004; whenentry no. 1, 2,
or 6 is observed (Table 1), then d| is selected as the NOAEL;
and when any other number is observed, 4, is selected as the
NOAEL. The probabilities of the correct decision for MBLV
under po = p1 < p2 (case 2) and po<p: = pz(case 3) may be
computed using the formula

Prlui <k, ua2k; 18(9) =
Priwy<kj 1SO)WPHup2 K180, ui< k) (@)

by specifying the values of po and the values of the added risk p,
— po. Figure 1 shows the probabilities of the correct decision at
the test size oy =0.0515 and a>;=0.1004 for the values of py =
0.05 and 0.15, and p» — po = 0.05, 0.30(0.05) in cases 2 and
3. The figure shows that the probabilities are relatively large
when p, = 0.05 in case 2, but small when py = 0.15 in case 3.
For example, when po = 0.15, the probability of the correct
decision is only 0.182 in case 3, even if the added risk is 0.30.
Consequently, the power of the test to detect an effect depends
on the background rate po, as well as on the added risk.

Summary: Flaws of the Statistical test

The findings from Tables 2 and 3 and Figure 1 are summar-
ized as follows: @) The BLV test failed to select dp as the
NOAEL at the routine test size, i.e., oy = 0.05 or 0.10. The
same is observed for the DMC test atex = 0.10 0r0.20. &) For
a step-up test, such as the BLV, the influence of the first step is
considerable. The key is in the sclection of the value of ¢,. For
example, the probabilities of the correct decision by the BLV
(and the DMC as well) is zero in case 3 at the test sizes o) =
0.10 {o = 0.20), even when the added risk is 0.30, because of
the reason stated above. It is apparent from Table 3 that if we
specify ;= 0.1253, the behavior of the BLV test is much im-
proved. The problem is that it is not easy to determine the test
size to use. ¢} The DMC test is not a step-up test, but has a
sirnilar property to the BLV test. Generally, if sample sizes are
small and a test is constructed based on the adjusted responses,
then the jumps in the values of the tail probabilities are
remarkable, frequently larger than 0.05. It is not justifiable in
those situations to carry out a test with a routine test size 0f0.05.
d) The modified test (MBLV) removes the difficulty due to
the first step and performs better than the BLV or DMC test.
With small sample sizes, however, the probability of the correct
decision in case 3 is disappointingly small, ¢) A puzzling aspect
of the modified test may be noted. Suppose that entry no. 4
in Table 4 is observed. If we set oy = 0.05 and or; = 0.10, then
Table 3 shows that 4, is selected as the NOAEL, but if
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Case 2 (p0=p <p2; 5*:d )

%%%%

0.15 0.20 0.25 0.30
ADDED RISK

77

LOW DOSE RATE = 0.05
[ ] 104 DOSE RATE = 0.15
*
Case 3 (po<p1=p2; § =d0)
.21 .23 .18
7 L %ﬂ 1 %]
0. 05 6,10  0.15  0.20  0.25  0.30

ADDED RISK
LOW DOSE RATE = 0.05

1 vow poSE RATE = 0.15-

FIGURE I.  Probability of correct decision by the MBLY test.

o= 00515 and a; = 0.1004, then d, is selected as the NOAEL.
The selection order of the values d as the NOAEL would
reasonably follow the pattern d; — di — dj, instead of jumping
from d; to do. The same phenomenon occurs with BLV and
DMC. f) We have applied the three tests to other small-sample
tables and have observed that the smaller the sample sizes, the
larger the values selected as the NOAEL. This behavior, dis-
cussed by Crump (/ } and others, is unacceptable because smaller
samples tend to make the dose levels appear safer. Brown and
Erdreich (7) emphasized calculation of statistical power to detect
an effect level of interest before drawing a conclusion. Those
calculations, however, are cumbersome, A preferred approach
may be to consider jointly the test size and sample size. It is not
easy to develop this idea in the framework of statistical testing,
but it can be achieved in the framework of model selection, We
explore the use of the Akaike information criterion (AIC) for this
objective in the next section.

Application of the AIC

We continue with the same notation and conditions described
_in the previous sections, i.e., k = 2 with dichotomous da data Let

(Px(l Po))

(Pz(l -Po)
(I-p1)po

=1 .
r2= ok (I-p2)po ()

Y= log!

The parameters -+, and 1y, are the log odds ratios of the effect at
d,and d;, respectively, relative to the effect at dy. Note that

Po=p =pm ifandonlyif vy, =+, =0
P=p<m ifandonlyif v =0, 220
po<p,po<p: ifandonlyif %20 v.>0

and that the order restriction py < p| < p2is equivalent to y; >
0, and y;- y1> 0.

The conditional log likelihood conditioned on 5(r} =
(P‘0+f1 +f2) is

(Y1, 72)=const+ Y1 ri+ 71372,

- log E S(r) n-35(0r)

nl-xl,nl-xz

exp(hxi+ Bxe). (g

were

( s ) — g! ,
X2 (st ! 0!
and ¥ is the summation that extends over all integers x, and x;
suchthatn, > x 20 m>xn>0and S —xi — x> 0.

Put L{yi, v2) = 21 (y1, v2) — 2 (number of parameters in-
volved in the likelihood), which is the likelihood function penal-
ized by the number of parameters involved in the model. Let 4,
and - be the maximum likelihood estimators (MLEs) of ~, and
+y2 which maximize L(vy,, v2). Then L{+¥:, 4.} measures the
goodness of fit of the two-parameter model to the data. In the
present sctup, the exact fit to the data is achieved by the two-
parameter mode} because the number of degrees of freedom is
two. Next we suppose that v, = 0 is known and that v, is the on-
ly parameter in the model. Let 7% be the MLE of ~,. Then L(v,
= 0, 1) is a measure of the goodness of fit of the one-parameter
model to the data. Of course, this model does not provide an exact
fit because it involves only one parameter. The penalized likeli-
hood has been established to measure the goodness of fit by ad-
Justing the number of the parameters involved in the model. Thus
if L(%1 , 2} < L (4, = 0, ¥%), we may select the one-parameter
model. This idea of the model selection is first proposed by Akaike
(&) and is widely known as the Akaike information criterion,

We take into account the order restriction v, 0, and +; -
12 0 and apply the AIC for the determination of the NOAEL
as follows:

a)If 4, > 0and 4» — 4, > 0, then compare L{, 72}, L{yi=
0, 47), and Ly, = 0, y2 = 0).

If L{v1, §2) is the largest, NOAEL = d,

if L(y, = 0, %) is the largest, NOAEL = 4|,

if L(y; = 0, y2 = () is the largest, NOAEL = d,.

b)If 4, > 0and ¥2- 71 < 0, then put % = v, = v; Land ob-
tain the MLE v of .

If ¥ £ 0, NOAEL = d,.

If ¥ > 0, then compare L{y,= 0, y: = 0) with L{y; = 7, 72
=4
ifL(y1 = ¥, v2 = ¥ ) is the largest, decide NOAEL = d,

if L{y\ = 0, v: = 0) is the largest, decide NOAEL = d,.
¢)If 4, < O0and ¥: — 4, > 0, then obtain %, the MLE of ~,.
If 4 < 0, decide NOAEL = 4..

If 47 > 0, then compare L(y, = 0, v: = O) with L{y; = 0, v»

= 1)
if L{yi = 0, v = 4%) is the largest, decide NOAEL = 4,
if L(yi = 0, y2 = 0) is the largest, decide NOAEL = d,.

dYIf < Oand v, — 1 < 0, then decide NOAEL = d,.
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This procedure is applied to the entries in Table 1. The results
are given in the last row of Table 3. Figure 2 illustrates the prob-
ability of the correct decision for case 2 and for case 3. Compar-
ing these results with the outcomes of the preceding tests, one can
clearly see the superiority of this method. In particular, the AIC
method relieves the problem of selecting the test size described
carlier and increases the probability of a correct decision.

x
Case 2 {p0=p1<p2; § =d1)

.69
.59
42
0.15  0.20
ADDED RISK
LOW DOSE RATE = 0.03
(] LOW DOSE RATE = 6.15
*
Case 3 (po<pl Py § -d )
54 57
.44
.36 .40

%3%]

¢.1% 0.20 ¢.25 0.30

ADDED RISK
P2 LOW LOSE RATE = 0.05
[ ] LoW COSE RATE = 0.15

Ficure 2. Probabitity of correct decision by the AIC.

Extension of the AIC for a NOAEL in
Categorical Data

We extend application of the AIC to determination of the
NOAEL in categorical response data. Suppose that there are b+1
categories, and let r; be the number of responses in the jth
category atexposure leveld;, i = 0,1,....k; j = 0,1,...,b. Let p;
be the response probability at the ith exposure level and jth
category. It is assumex that the samples are random and mutually
independent and that the response at dose i(rio, 7u,....7s) are
multinomially distributed with parameters (n;, pa, Pa,....pw)s i
=01l,....k. Let Go=< Ci<... <C;, be given scores that are
assigned to the categories. For example, we might assign C, =
0, C.=L,...,C,=b, or alternatively, the Wilcoxon score could be

assigned. We introduce the following model for the response
probabilities:

lag(pu) ﬁ: (C -Co), j=1,2,..b:i=0,1,....k (®)

It is assumed to be known a priori that 8y < 81 <... < k. Alter-
natively, onc could assume that 8y> 3, >... > «. This assurnp-
tion generalizes the previous assumption regarding the order
restriction of the response probabilities.

Put S(r) = rg + ryy + ... + ry. The conditional log likelihood
of [ry) condltloned on S(r,-), J=201,...b,is given by:

k b
Lns 7y = const + Z' Y '2- rij (Cj -Cq)
i=1  j=1

bS8
1082 I1 expl > % Y % (Ci- Codl s

xojtxyl..xg! o1 e
j=0 7L i i=1  j=1
9

where 4, = ; — Boand I* is the summation that extends over
all combinations of the integers { xqy, xy,....%y ) such thatn; >
Xij > 0 and 101+xlj+ ctxy = S(rj), j = 0,1, .. .,b. The lOg
likelihood shows that it is sufficient to carry out the statistical in-

ference on vi, y2..., and -y, based on statistics
b
T:; = 21 i (C}‘ -Cpd i=1,2m0k (10)
i=

The model (8), which seemns somewhat artificial, is a mathe-
matical device to lead to this reasonable result.

The order restriction is represented by v, 2 0, and vi - yia 2
Q,i =2,3,....,k. The AIC is applied for the determination of the
NOAEL taking this restriction into account. for k = 2, the pro-
cedure is the same as that given in the preceding section.

Use of a Dose-Response Curve
We define

(—") J;l (C CO)pu (11)

as an average dose response. Fitting a smooth curve
h(6:d) = 8:d + 6d® +...+ 6,4 (p<k)

tO ¥i, ¥2,..., v the average dose response curve is represented
by
pld:hg ,Bo) =
b b
Z' {(C] = CO)‘I;‘(G 1d) / [1+ Z' QI(B id)] }a (12)
i=1 i=1
where

g (8:d) = exp((C; - Co)lBo + W8 )} . 13)
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Similar to the preceding section, the AIC may be applied 1o the
conditional distribution to select the optimum value of p that fits
the data best and to obtain the conditional MLE 8y, 85,... 8,,, of
0, &, ...,0,. It is not feasible to estimate 3, from the conditional
likelihood function. One way to estimate it is to use the full
likelihood function, assuming that #(@:d) is known. The other
method is to use the data in the control group whose response

robability contains only 3;. It is not easy to get the variance of

9, but the approximate variance of 2(6:d) is readily available
from the Fisher information of the conditional distribution.
Thus, in this paper, we ignore the variation of 8 for illustrative
purposes and only take inte account the uncertainty of estimating
f. Let UB (d) be the 95% upper confidence bound of A(8:d).
Then for a given constant, ¢, the NOAEL = d* may be found by
solving either

- p(d*:UB(d*); By )-p(0: 0, Bo)
1-- p(0: 0, By )

(relative risk) - (14)
or

p(0:0, By) +c=pld*: UB(d*), By) (additiverisk). (15)

Asin Crump (1), we may introduce a threshold factor. That ex-
tension, and the construction of a reliable confidence interval,
will be discussed in a follow-up paper.

An Application

Fitzhugh et al. (/! ) report results of exposing Osborne-Mendel
rats for 2 years to diets containing aldrin in 0, 0.5, 2, 10, 50, 100,
and 150 ppm. The study reports the degree of liver changes
categorized as none, trace, very slight, slight, slight/moderate to
moderate, and greater than moderate. For the purpose of illustra-
tion, we use a part of data as shown in Table 4. The scores are
assigned as Cy=0, C, =1, ;=2, (3=3, and then the AIC pro-
cedure is applied. The conditional MLE of +,, -y and +s are ob-
tained as v, = 1.193, 4, = 2.107, 45 = 2.538. These estimates
satisfy the order restrictions ¥, > 0, 2 — 41 = 0, and §; —
Y22 0. The values of the penalized likelihood are given by

L, 45,90 = — 264, Ly =0, v2 = 72, ys = ) =
— 2563
Liyi=0,7=0,7=7=-3042,L(1»=0,%=0,v
= () = - 37.87,

where 41 = 1.287, 43 = 1715 are the MLEs under v, = 0, and
= (0.991 is the MLE of +; under v, = 0, y; = 0. The second

likelihood provides the maximum among the four choices, so d,
is chosen as the NOAEL.

We also extended the modified test (MBLYV) to apply to these
data for comparison. The test leads to d; as the NOAEL for o

= (.10 and «; = 0.10. The dose-response curve method is also
Table 4. Degree of liver changes.
Severity®
Dose N T VS S Total
0 16 1 0 0 17
0.5 15 4 0 0 19
2 10 8 0 1 19
10 1 3 7 1 22

“N, none; T, trace; VS, very slight; S, more than slight.

applied for comparison, particularly because it is not restricted
to experimental dose values for choice of the NOAEL.

The AIC selects h(0:d) = 6,d + 6.4 with (6,, 6,) = (0.9778,
—00772). The variance and covariance of (8., 62) are V(@) =
0.1613, V(Bz) = 000123 and cov(d,, 8;) = ~0.0140. Assummg
@, 8,) is known, the estimate of &, from the full likelihood is
—3.0132. Alternallvely, the estimate of 3, from the control
group data alone is —2.8898. Figure 3 shows the average dose—
response curve and its vpper 95% confidence bound, we may
assess the NOAEL from Figure 3. For example, whenc = 0.2 is
specified in the relative risk model, the NOAEL is assessed to be
0385
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Figure3. Dose-response curve,

Discussion

We have developed several methods of selecting the NOAEL
when the responses are measured by severity and also when the
sample sizes are small. Our conclusions are as follows: a) If one
wants to select the NOAEL from the experimental dose levels
{dod,...di}, then implementation of the AIC in the order
restricted likelihood method is preferable to a testing approach,
as demonstrated for three alternative test procedures. b) If one
wants to select the NOAEL from the full experimental range of
doses, (dy to d;), then a dose-response curve is required to
estimate responses between observed values. The choice of the
dose-response curve may affect the outcome, but fitting the
“average dose-response curve” as described is reasonable. The
choice of ¢ in that model should be chosen carefully. The
NOAEL can be based on either relative risk or additive risk,
depending on one’s objective,
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